
SWL-TR-93-5025

PROPOSED OBJECT ORIENTED PROGRAMMING
(OOP) ENHANCEMENTS TO THE VERY HIGH
SPEED INTEGRATED CIRCUITS (VHSIC)
HARDWARE DESCRIPTION LANGUAGE (VHDL)

9i

a MICHAEL T. MILLS, LT COL

AD-A274 004
I211111111ii11ii

AUGUST 1993

FINAL REPORT FOR 05/04/92-08/04/93

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTIC
"�oC 2,I993 ,.

93-30636

SOLID STATE ELECTRONICS DIRECTORATE
WRIGH7 LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7331

98 12 17028

NOTICE

When Government drawings, specifications, or other data are used for
any pjrpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated
or in any way supplied the said drawings, specifications, or other data,
is not to be regarded by implication, or otherwise in any manner
construed, as in licensing the holder, or any other person or corporation;
or as conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information
Service (NTIS). At NTIS, it will be available to the general public,
including foreign nations.

This technical report has been reviewed and is approved for
publication.

MICHAEL T. MILLS, LtCol, USAFR JOHN W. HINES, Chief
Design Branch Design Branch
Microelectronics Division Microelectronics Division

STANLEY E. WAGNER, Chief
Microelectronics Division
Solid State Electronics Directorate

If your address has changed, if you wish to be removed
from our mailing list, or if the adaressee is no longer
employed by your organization please notify WLiELED, WPAFB, OH
45433-7331 to help us maintain a current mailing list.

Copies cf this report should not be returned unless return is
required by security considerations, contractual obligations,
or notice on a specific document.

Form Approved

REPORT DOCUMENTATION PAGE oMB No, 004-08o8

=.13e. 1-1*~ -: 8 :' e7 - t ýf 'fC a '~ I,: C -. ec IC esc- tre ! ýe '0, * ';- -t"Mofts Ofl -. n.:; ? ST ý; W4Of.'C
ah-;3,: 4-ý ,ta 'ecreo a no ..:'ro evrc a o'e P, -. -Z - at '~~ S e'sd l e a'o '; tt9% b~ldtl ft! -ate :'-3. :tre' j,oej ot I

Sa. .. 10s. 'e 2^4 4 ýtir' W2.4302 J,'d t: ý 0-. 1!~ 't %4ade'ent ana 9ý7e Pgper.C' ReC.'-! C, P':je:t ýC'.1t.188 Aapý e CC ;D503

I AGENCY USE ONLY Leave blanx) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

AUG 1993 1 FINAL 05/04/92--08/04/93
4 TITLE AND SUBTITLE F-):Uk'U~l) UUJ•SLT" UL1L•kI'I'kL)ZS FHOGRUAMM S. FUNDING NUMBERS

(OOP) ENHANCEMENTS TO THE VERY HIGH C
SPEED INTEGRATED CIRCUITS (VHSIC) PE
HARDWARE DESCRIPTION LANGUAGE (VHDL) PR

6 AUTHOR(S) TA
MICHAEL T. MILLS, LT COL WU

7 PERFORM,!cG ORGAN ZATION NAME(SI AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

SOLID STATE ELECTRONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7331

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING MONITORING

SOLID STATE ELECTRONICS DIRECTORATE AGENCY REPORT NUMBER

WRIGHT LABORATORY WL-TR-93-5025
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7331

11 SUPPLEMENTARY NOTES

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLIMITED.

l c° ibes an integrated set of Object Oriented
Programming (OOP) enhancements proposed for a future revision of
the VHSIC Hardware Description Language (VHDL). It offers
inheritance with extension for VHDL record, array and private type
declarations, plus multiple inheritance with extension for entities
and corresponding architecture bodies, and a class wide dispatching
capability for all tagged types and tagged entities. If these
three enhancements are accepted by the IEEE, VHDL based design
automation tools can possess new abstract design capabilities for
developing and enhancing electronic hardware. Current software
languages with OOP capability increase productivity and reuse by
enabling the design process to inherit and extend existing data
structures and functionality. By selectively inheriting what
already exists, the designer minimizes duplication. Functional
capabilities and characteristics can be inherited and extended
without affecting existing portions of a design. --

14. SUBJECT TERMS 15. NUMBER OF PAGES
VHDL - IEEE 1076 - Design Language - Hardware .; : -
Description Language, OOP - Object Oriented 16. PRICE CODE
Programming

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
%S- 754.0- 280 5500 Sta-daao :ý-" 298 ' . 2-89,

Table of Contents

1. Introduction 1

2. Benefits of Adding OOP Capability to VHDL 3

3. OOP in Small Talk, C++, and the Proposed Ada 9X 5

4. The Proposed OOP Enhancements to VHDL Types 6

5. An Example of Using Tagged and Derived Types in VHDL . 9

6. OOP Enhancements to VHDL Entities and Architectures . . 10
Derived Entities .i.................................... 10
Derived Architectures I...11

7. An Example of Using Derived Entities and Architectures 14

8. Classes of Types 15

9. Rationale for adding OOP to VHDL 16

10. References ... 18

Accesion For

NTIS CRA&I
DTIC TAB
U, ainounced El
J :ztication

B y
Di t ib ,tioi

, i1.itbtiiiy Codes
)Diot Ior

iii

m~~~ ~ Dvmcnu mn mmnn Nn.NINNrN m uum u ur r E

1. Introduction

This report describes a proposed Object Oriented Programming
(OOP) set of enhancements to VHDL to be considered for the next
or later revision of IEEE-Standard-1076 [1] or IEEE P1076 1992B
(2]. First, it incorporates OOP features such as extended
derived types into VHDL type declarations by borrowing some
features from Ada 9X, the next revision to the Ada programming
language. Second, it incorporates a new OOP technique, developed
exclusively for this proposed enhancement, called derived
entities. Third, it uses the class-wide type capability from
Ada 9X by proposing a 'CLASS attribute for tagged types to
support class-wide dispatching of operations. Certain types and
all entities can be tagged which specifies that their
characteristics and functional capabilities can be inherited
(derived) and extended.

Record, array, and private type declarations with OOP provide the
first proposed inheritance features. This allows new signals and
variables to inherit characteristics (such as a data structure or
bus width) from existing signals and variables. Any procedures
or functions with parameters of the inherited type are also
inherited. The designer can add new characteristics, functions,
and procedures to the new signals and variables without
disturbing the inherited signals or variables. These three OOP
techniques will make VHDL a significantly more powerful abstract
design language.

Derived entities provide the second proposed inheritance feature
which uses syntax similar to Ada 9X but allow declarations and
concurrent statements to be inherited from multiple entities.
The designer can selectively modify, leave alone, or extend
entities resulting in new capabilities created with minimal
specification. If something other than what is inherited is
desired, the designer specifies what is different from the
inherited entities and their corresponding architectures. The
designer still has to code complete concurrent statements,
including whole process statements.

As a goal, this proposed set of language changes should stay
upward compatible and minimize impact on existing VHDL tools.
OOP normally incorporates inheritance to a class of objects w~th
a set of operations associated with each class. The proposed OOP
features for VHDL borrow derived types from Ada [3] and
extensions of derived types from the proposed Ada 9X [4]. This
proposal treats signals and variables as candidate VHDL objects
to incorporate inheritance. Procedures and functions with
signals and/or variables as its parameters or function returns
serve as operations associated with these signals and variables.
Since signal and variable declarations include the type construct
(i.e., type_mark), adding extended derived types and a 'CLASS
attribute for tagged types to VHDL will provide inheritance to

1

signals and, to a lesser extent, variables (including shared
variables in VHDL-92B). Since the basic operations on signals
and variables are assignment statements, in order to inherit
such operations, the designer must encapsulate such assignment
statements into procedures and (possibly) functions. Inheritance
through derived types can only impact the type portion of a
signal or variable. However, when used with other OOP features
in this report, such inheritance can add significantly to the
abstractness of VHDL and make VHDL designs more easily modifiable
and reusable. By using the proposed extendable derived types
for signals and variables and incorporating them into VHDL
procedure and function parameters, operations such as signal or
variable assignments can be inherited from existing subprograms
into new subprograms and extended to provide new data structures.
The designer can add new functional capabilities of inherited
subprograms without affecting the existing subprograms.

2

2. Benefits of Adding OOP Capability to VHDL

As microelectronic designs continue to grow in complexity,
design descriptions become overwhelmingly large. VHDL descriptions
of this complexity could be simplified if new entities could inherit
the characteristics and functionalities of existing entities and
extend the characteristics and functionality without requiring any
reanalyzing (or recompilirg) of the old entities. Rather than
duplicating a significant portion of existing entities into new
entities, only differences between existing and new entities would
need specification. For designs with the majority of its structure
and behavior nearly regular (i.e., built with somewhat similar
entities), such a VHDL enhancement could reduce complexity of VHDL
code significantly.

If any existing entity, architecture, or signal were modified,
the current VHDL would require that they be reanalyzed (i.e.,
recompiled). If new entities and architectures could inherit
characteristics of existing ones and extend them without affecting
their structure or behavior, designs could be expressed as
differences from the existing entities and architectures which would
no longer require reanalyzing. Both VHDL code size and design time
would decrease significantly for most large designs. The
appropriate Object Oriented features added to VHDL could make this
a reality. Such VHDL changes would impact design, reuse,
extendability and maintenance of the design description while adding
significant design abstraction capability to the language. Existing
designs are more adaptable for reuse if increased signal
characteristics can be expressed in extendable derived types that
leave these existing designs untouched. Such modifications reduce
any degrading impact on the reliability of existing designs. The OOP
capability described in this report is proposed for this purpose.

By adding OOP capability to the type declaration in VHDL,
signals and variables can inherit characteristics from existing
types. By modifying a signal declaration by changing its type,
procedures which contain operations on these signals and variables
can also be used with the new signals and variables. As a result,
adapting procedures to modified signals with derived types becomes
automatic.

With the following steps, the designer can develop procedures
associated with signals and variables as building blocks to increase
abstraction characteristics of VHDL design. (1.) Initially, develop
a class of types and signals which have these types. Then, (2.) as
these signals are more defined or specific, develop more specific
procedures which are used by the more specific signals. When new
signals are developed, which fall within the original class of
signals, then procedures which were developed for that class can be
used for the new signals without any modification. With extended
derived types discussed below, large VHDL descriptions can be left
intact without recompilation.

If this approach is implemented into a future VHDL revision and

3

corresponding design automation environments, productivity, reuse,
reliability and maintainability of resulting microelectronic designs
could potentially increase significantly. When new entities can be
designed by specifying differences from one or more existing
entities, productivity is likely to escalate. The more capabilities
that new entities can inherit from existing entities, the greater
reuse is implemented. Since existing entities are untouched and not
reanalyzed, the original reliability remains high when adding new
functionality and structure through derived entities, and
architectures, and extendable derived types. Maintainability is
enhanced by reducing duplicate specification and keeping
capabilities of several entities localized to a few rather than many
entities and corresponding architectures.

The late binding features of these proposed language
enhancements provide a more dynamic language that opens new
opportunities for implementations. Such language enhancements can
significantly reduce impediments to faster, more dynamic design
tools of the future approaching near instantaneous compilation and
binding as the designer adds extended features to existing portions
of his or her design.

The proposed OOP features in this report require the following
reserved words to be added to the VHDL standard:

new
is new
with record
with array
with private
tagged (followed by record, array, private, or entity)

(also, tagged is in the phrase is tagged.)
in derived
with null
with delete

Since most of these reserved words are only allowed in
restricted locations within the language and are usually accompanied
with another reserved word, chances of these new reserved words
causing the proposed OOP changes to be nonupward compatible is
expected to be zero.

4

3. OOP in Small Talk, C-+, and the Proposed Ada 9X

Determining an appropriate OOP approach for VHDL began by
examining OOP implementations of existing software languages such
as Small Talk, C++ and the current draft revision of Ada, called Ada
9X. After looking at these OOP approaches, considering advantages
and disadvantages of each, and considering appropriateness with
existing VHDL features, I selected Ada 9X as the most appropriate
baseline from which to develop OOP enhancements to VHDL. As a
member of the Ada 9X Distinguished Reviewer Team, I had up to the
minute access on the current state of Ada 9X and was most familiar
of its OOP approach compared to the other languages.

Small Talk's approach to OOP is to allow everything to be
inherited. This approac;. has a tremendous implementation cost which
is unacceptable for large and complex designs normally implemented
by VHDL.

The C++ approach to OOP, although well known by a large
software community, had several drawbacks when compared to Ada 9X.
[3] contains a technical report on Ada 9X vs. C++. Due to its
evolution from C, a language with unsafe features and with little
to offer from which to build abstractions, C++ had to implement new
features to do what already existed in the Ada language, such as
information hiding. The unsafe characteristics of C, especially for
large complex programs, is still an irritant for C++.

Ada 9X was the best approach because of several reasons. VHDL
was originally designed using Ada as a baseline. As a result, VHDL
became very Ada like. The Ada 9X OOP approach works well with
large, complex programs. It also builds from features already in
the Ada language.

The OOP approach, proposed for VHDL in this report, borrows
some of the OOP features from Ada 9X, such as derived and tagged
types. It also contains some unique OOP features, which are Ada 9X
like in syntax, but were developed exclusively for VHDL. These are
derived entities and architectures. This feature was necessary to
apply OOP where it could have its biggest impact, on the VHDL
entity, the key to VHDL abstraction. Ada 9X derived types used by
this approach apply only to the type portion of declared signals and
variables. The VHDL derived types are proposed for record, array,
and private types.

Another proposed OOP feature borrows class-wide types from Ada
9X which provides polymorphic dispatching of operations to class-
wide types which are tagged. A 'CLASS attribute is proposed to
provide classes of tagged types and their derivitives. This will
provide a more complete abstraction capability to VHDL when
integrated with the other two proposed OOP enhancements.

5

4. The Proposed OOP Enhancements to VHDL Types

By adding derived types (from Ada 83) with extended parts
(like those proposed for Ada 9X), VHDL can incorporate Object
Oriented Programming capability within its data types.

In current VHDL, signals can reside in Architecture Bodies,
Blocks, Packages, Entities, and Parameters of Subprograms.
Variables are restricted to Processes and Subprograms. This
proposed OOP approach treats VHDL signals and variables as
objects. Signal Assignments and Variable Assignments, whether
concurrent or sequential, are operations on signals and
variables. Procedure calls can be overloaded based on their
parameter types. Signals and variables are declared with types
and, therefore, can be used as formal parameters of subprograms
to differentiate which overloaded subprogram can be used as one
of its operations.

The following changes are proposed to VHDL types in order
to add object oriented programming with inheritance to VHDL
signals and variables and the procedures and functions associated
with them.

1. Add a derived type to the type definition as follows:

type_definition ::=
scalartype-definition
I composite...typedefinition
I accesstype__definition
I filetype-definition
I derived-type_definition

derived-typedefinition ::=
new subtype-indication (typeextensionpart]

typeextension-part ::=
record_extensionpart
I arrayextension part
I privateextensionpart

record_extensionpart
with record

elementdeclaration {,element_declaration)
end record

arrayextension~part
with array

[modifiedindex_constraint]
[of modifiedelement_subtypeindication I

end array

privateextensionpart
type identifier is now

6

ansistersubtypejindication with private

The reserved word new is added to the language to designate that
the type is derived from an existing type. The
typeextensionpart is only allowed for tagged types discussed
below.

2. Add tagged types to the language by adding the reserved word
tagged to the array and record type definition. Adding this
reserved word to the compositetype definition provides extended
inheritance for record and array types.

composite_typedefinition :.=
[tagged] arraytype definition
I [tagged] record-type_definition

The tagged feature can provide the OOP polymorphism (i.e.,
dynamic binding) to the language. In Ada 9X, this feature
includes dynamic (run-time) polymorphism. Tagged types provide
dynamic binding and dispatching of inherited features at run
time. The implementation may provide static checking at compile
(or analysis) time for some OOP binding. However, when essential
OOP binding information is only known at simulation time, dynamic
binding capability is required.

The proposed Ada 9X includes only record and private types as
tagged [4]. An early version of the Ada 9X design proposed array
types as tagged but was later dropped to keep the language
complexity and implementation costs to a minimum. Since array
types in VHDL are used heavily, this proposal currently includes
tagged and derived types for arrays as well as records. If
implementation costs are too high for VHDL as well, then that
part of the proposed enhancement could be dropped without
impacting the rest of this OOP enhancement to VHDL.

Assuming private types either survive the IEEE balloting process
for the VHDL-92 standard or appear in a future revision, this OOP
proposed enhancement also includes tagged and derived types for
private types (as in Ada 9X) for added abstraction capability.

3. This proposal adds a class concept for tagged types to the
language. Ada 9X contains this feature by adding a 'CLASS
attribute for class-wide types. An Ada 9X class specifies a base
type plus all its derivatives which can have common
characteristics and operations. Class-wide types provide the
internal dispatching capability of tagged types for late binding.

Record, Array, and Private declarations with tags added:

record type_declaration
[tagged I record

element_declaration
(element_declaration I

end record

7

constrained~array-definition
tagged I array index_constraint of

element-subtype indication

unconstrained-array~definition:=
tagged I array (index_subtype-definition

index-subtype-definition)) of
element-subtype_indication

private_type declaration ::
type identifier is [tagged

private [contractual-details

8

5. An Example of Using Tagged and Derived Types in VHDL

package ABSTRACT is
type BUSSSMALL is tagged array (0 to 15) of BOOLEAN;

entity SOMETHING is

end ... ;

architecture DATAFLOW of SOMETHING is
signal SMALLSIG : BUSSMALL;

begin

SMALLSIG <= ...

end ... ;

use package ABSTRACT;
package MORE_SPECIFIC is

type BUSLARGE is derived BUSSMALL
with array (16 to 31) of ...

-- This type inherits.

signal LARGERSIC BUSLARGE; -- New signal
-- indirectly inherits from old
-- signal through derived type
-- inheritance.

end ... ;

9

6. OOP Enhancements to VHDL Entities and Architectures

Add a new capability for new entities to be derived from existing
entities and to inherit all characteristics from the existing
entities and their corresponding architectures. Add an optional
tagged indicator (a new reserved word tagged) to the original
entity declaration to specify inheritance at simulation time.

entity_declaration ::=
[tagged] entity identifier is

entityheader
entity_declarative_part

begin
entity-statementpart]

end entity [encity simple name];

Derived Entities:

Add a new VHDL construct called a derived entity which references
any existing entity declaration and specifies any modifications.
The derived entity inherits all the functional, structural, and
declared object (signal, variable, and constant) characteristics
of the entity it references. The entity..extensionpart of the
derived entity contains any added or modified parts that are
different from the existing (or referenced) entity. This gives
the designer a capability of creating new entities that are
similar to existing entities by only specifying changes. None of
the existing entities are corrupted and, therefore, should not
have to be reanalyzed when analyzing and linking the derived
entities. The new key word tagged is added to existing entities
to specify inheritance at simulation time (often called
polymorphism). This feature tells the tool environment to do all
that is necessary to prepare the entity for inheritance at
simulation time. Only specify one inherited_entityidentifier
unless inheritance is desired from more than one entity (referred
to as multiple inheritance). When multiple inherited entities
are specified, the first one listed is the default to resolve
conflicting declarations and concurrent statements from different
inherited entities. To selectively deviate from the default,
explicitly write the declaration of the concurrent statement.
Note: Derived entities can also be tagged so that their
characteristics and functionality can be inherited by entities
derived and extended.

derived_entitydeclaration
[tagged] entity identifier is new

inheritedentityidentifier
is new inherited_entity_identifier }

I entityextension__part

entityextensionpart ::=
with entity

entityextensions_list

10

end [entity] [entitysimple-name];

entity-extensions_list
[entityheader_changes]
[entitydeclarative.part-changes]

C begin
entity-statementpartchanges]

Include in the entity-extensionslist all added or modified
declarations, stater ýs, generics, or ports. To copy items from
the derived entity iout adding extensions specify with the
reserved words "wit.: .-ull" at the beginning of the item.

entity-headerchanges ::=
[(with null] formal_generic_clause]
[[with null) formalportclause I

entitydeclarativepartchanges ::=
{ [with null] entitydeclarative_item }

entity-statement-part-changes ::=
{ [with null] entitystatement }

The above new VHDL features allow the designer to specify
differences (additions or modifications) between a new derived
entity and the existing entity it references without having to
rewrite any significant portion of the existing entity.

Note: An earlier design of entitystatementpart changes
revealed that diminishing returns might be reached if too many
changes are specified. In this case, single inheritance would be
more appropriate than multiple inheritance. For some entities
and architectures, no inheritance would be more appropriate.
This approach provides controlled single or multiple inheritance
either statically (by the analyzer) or dynamically (by the
simulator). Derived entities and architectures can be inherited
by other additional derived entities and architectures. As a
result, abstraction can be implemented extensively in a design.

For declarations and concurrent statements within nested block
statements, the block structure is specified by rewriting the
block statements. Respecifying the block, or nested block,
structure is normally a minimal effort and avoids added syntax
complexity.

Derived Architectures:

The following new VHDL features perform similar functions as
above for derived architectures. This allows designers to
specify differences (additions, modifications, and deletions)
between an architecture body of a new derived entity and the
referenced architecture of an existing entity. For simulation
time inheritance, only the entity of the referenced architecture

11

is tagged. Although changes are specified within the derived
architecture, all inheritance is accomplished through the entity,
the chief VHDL building block for abstraction.

derived_architecture_declaration ::=
architecture identifier of derivedLentityname

in [tagged]
new inherited_architecture_name

{ is new inherited_architecture_name }
[architecture_extensionpart]

end [architecture][architecture-simplename];

The architectureextension-part includes items to be added or
modified. Items to be deleted are designated "without".

architectureextensionpart ::=
(architecture_declarative-partchanges]

[begin
[architecturestatementpartchanges]

architecturedeclarativepart-changes ::=
{ [without] block-declarative_item }

architecturestatement-partchanges ::=
{ [without] concurrentstatement

Both blockdeclarativeitems and concurrent statements within the
derived architecture can repeate exactly in the architecture of
the inherited entity, modified (using the name of the item or
statement and changing what is desired), added as a new item or
statement, or deleted using a with delete at its beginning.
Existing items or statements which are not changed do not need to
be repeated. The analyzer will include them as part of the new
architecture. To reference nested parts of an architecture,
repeat the surrounding nested constructs and anything else
necessary to resolve any conflicting names, etc.

Note: Since derived entities can be tagged, there is no reason to
have a tag for the corresponding derived architecture (for
further inheritance).

Note: An earlier design of architecture_statementpart-changes
provided the capability to selectively change the default
inherited entity for each (or a group of) block_declarative_items
or concurrentstatements. However, this feature complicated the
syntax. Therefore, in order to avoid complexity, the syntax was
changed so that the designer would rewrite or modify the
declaration or concurrent statement that deviates from the
architecture of the defaulted inherited entity. Unique
declarations and concurrent statements are still inherited from
their respective architectures (or entities), whether it is the
default or not. The earlier draft syntax for
architecture_declarativepartchanges and
architecture_statement__partchanges was

([of inheritedentity_identifier]
([with null] entity_statement }

12

The "inherited_entity_identifier" changed the default for a
single or a group of declarations or statements. The
"inheritedentity_identifier" rather than the
"inherited_architecture_name" was used as a selection mechanism
since multiple inheritance consists of inheriting from
architectures of corresponding multiple entities rather than
multiple architectures.

Note: The number of changes made within a derived entity or
architecture should be limited to a reasonable number to maintain
readability of the VHDL source code. If the number of changes
exceeds this, then best engineering practice dictates that the
new entity and its architectures be written as actual entities
and architectures that are not derived. The purpose of derived
entities and its corresponding derived architectures and
inheritance is to reuse what exists, adapt these entities, and
incorporate a limited number of changes without having to create
behaviors, structures, and objects that already exist in the
inherited entities or their respective architectures.

13

7. An Example of Using Derived Entities and Architectures

Existing entity and architecture body:

tagged entity FullAdder is
port (X, Y, Cin: in Bit, Count, Sum: out Bit);

end FullAdder;

architecture Data_Flow of Full_Adder is
signal A, B: Bit;

begin
A <= X xor Y;
B <= B and Cin;
Sum <= A xor Cin;
Cout <= B or (X and Y);

end DataFlow;

Derived entity and architecture body (only specifying changes):

entity Modified_Adder is new FullAdder
with entity
generic (newstuff : integer) -- This is added.

-- This port is unchanged, therefore unspecified.
begin

New_Object : BIT; -- only extensions
end entity ModifiedAdder;

-- Statements from inherited
-- entity are implicitly

-- coppied here.

architecture WorpFlow of ModifiedAdder is
new DataFlow

begin
with null
Sum <= A xor Cin;

Intermediate <= A xor Cin; -- added
Sum < Intermediate and A; -- modified

-- Note: The remaining declarations and
-- statements remain unchanged.

end architecture WorpFlow;

Note: More complic.,týd examples would show more obvious reuse and
design time/cost savings. Note that the original entities and
architectures are untouched and, therefore, remain error free.
Since the changes are mininimized and the bulk of design is localized
in existing entities and architectures, the resulting code is highly
reliable and maintainable compared to code that duplicates a
significant portion of predesigned code.

14

8. Classes of Types

This proposed VHDL enhancement provides dispatching on
pimitive operations of tagged types. It borrows this from Ada
9x.

Ada 9X provides the following:

"Ada 9X provides dispatching on the primitive operations of
tagged types. When a primitive operation of a tagged type is
called with an actual parameter of a class-wide type, the
appropriate implementation is chosen based on the tag of the
actual value. This choice is made at run time and represents the
essence of dynamic polymorphism. ... In some cases, the tag can
be determined at compile time." [4]

15

9. Rationale for adding OOP to VHDL

Since concurrent procedure calls can be called from
architecture bodies, entities (if passive), and blocks, and since
nonconcurrent procedure calls can be called from processes and
subprogram bodies (functions and procedures), then procedures are
good candidates for primitive operations. Since procedures (and
functions) can be overloaded and, therefore, selected by their
parameter and return types, these operations can be associated
with objects of the same type. Formal parameters and returns of
procedures and functions can be constants, signals, or variables.
Since constants cannot be changed, signals and variables are the
remaining objects which can be operated on by procedures. Since
the scope of which variables are visible is limited to processes
and subprograms, their application as objects for inheritance is
limited. However, they may have some value for abstraction for
objects confined within its scope. Global variables with their
increased scope offer additional objects for inheritance but are
only an added convenience. None of the OOP features in this
report depend on global variables. The remaining and most likely
objects associated with procedures and candidates for OOP are
signals. Signals can be operated on from within architecture
bodies, blocks, processes, and subprogram bodies. The common
operation which affects signals is the signal assignment
statement. Since procedure calls can be located anywhere signal
assignment statements are present, one or more signal assignment
statements can be placed in procedures (subprogram body
declarations). Then, such procedures can be overloaded and
associated with signals that are formal parameters of a given
type. If the types of such signals contain inheritance
capabilities, then adapting processes containing such procedure
calls to modified types of signals is made easier as a result of
increased abstraction within VHDL.

As procedures accumulate in a design, they can be placed in
packages and imported from a library. These procedures provide
such operations reusable. Signals with inheritance capability
can be declared abstractly and be associated with a set of common
procedures as its operations. As a design progresses, new
signals with types derived from more abstract types can use the
original procedures plus new ones specific for the new (derived)
signals. Characteristics of these signals can be extended in a
polymorphic manner by designating its base type as tagged. Thus,
stepwise refinement in signal definition with its associated
operations (signal assignment statements embedded in its
associated procedures) offers a method of providing greater
design abstraction within VHDL design descriptions and
simulations.

The following example illustrates the above concept.

-- Declaring abstract types:

type A is tagged array (Al : BOOLEAN) of BOOLEAN;

16

type B is new A with

type C is tagged record

end record;

signal X : A;

signal Y : B;

signal Z : C;

procedure M (X:A) procedure M (Y:B)

begin; begin;

A 1 <= transport X; M_1 <= transport Y;

A_2 <= ... ; M-2 <= . ;

end; end;

process

"M (X:A);

"M (Y:B);

end;

17

10. References

1. The Institute of Electrical and Electronic Engineers, Inc.,
IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1987.

2. The Institute of Electrical and Electronic Engineers, Inc.,
IEEE Standard VHDL Language Reference Manual - Draft (The 1992
Draft Revision currently being balloted). IEEE Proposed Std VHDL
1992B Draft.

3. American National Standards Institute, Reference Manual for
the Ada Programming Language. ANSI/MIL-Std-1815a edition, 1983.

4. Ada 9X Mapping/Revision Team, Intermetrics, Inc., Annotated
Ada 9X Reference Manual - Draft, Version 2.0, 29 March 1993.

18

